

α_s from Hadron Structure Phenomenology

Aurore Courtoy IFPA, Universite de Liege

Workshop on QCD Evolution May 14-17, 2012, Jefferson Lab

Outline

- Strong Coupling Constant
 - Perturbative determination
 - Non-perturbative approaches
- Hadron Structure Phenomenology
 - Final State Interaction and Parton Distribution Functions
 - Parton-Hadron Duality
- Non-perturbative QCD coupling from Phenomenology PRELIMINARY

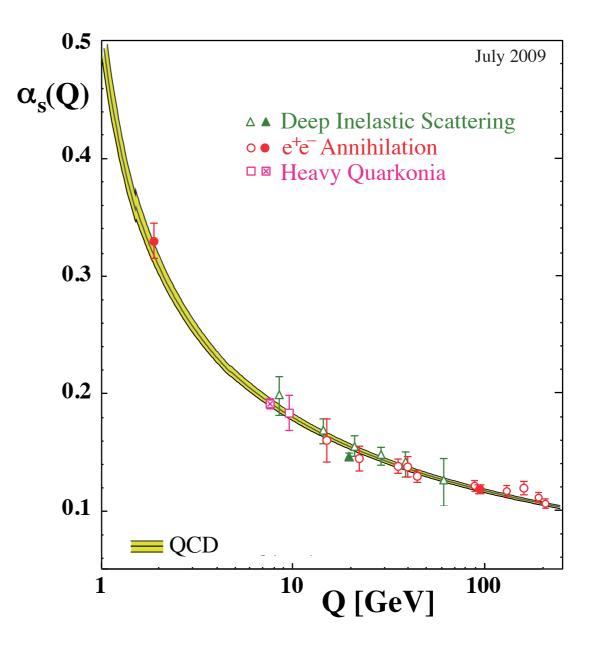
QCD Coupling Constant in pQCD

- QCD with massless quarks
 - no scale parameters
- RGE introduces a momentum scale ∧
 - interaction strength =1
- Renormalization scheme dependence of Λ
- World data average (2009)

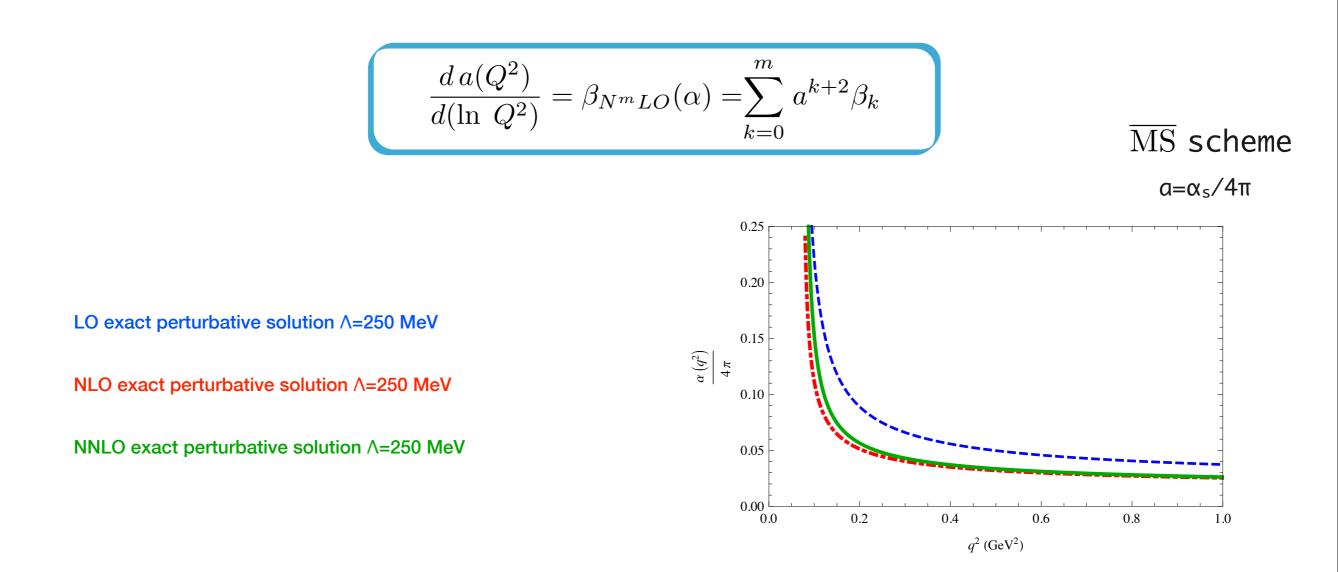
 $\alpha_{\rm s}(M_{\rm Z^0}) = 0.1184 \pm 0.0007$

that corresponds to

$$\varLambda^{(5)}_{\overline{MS}} = (213 \pm 9 \)\,\mathrm{MeV}$$

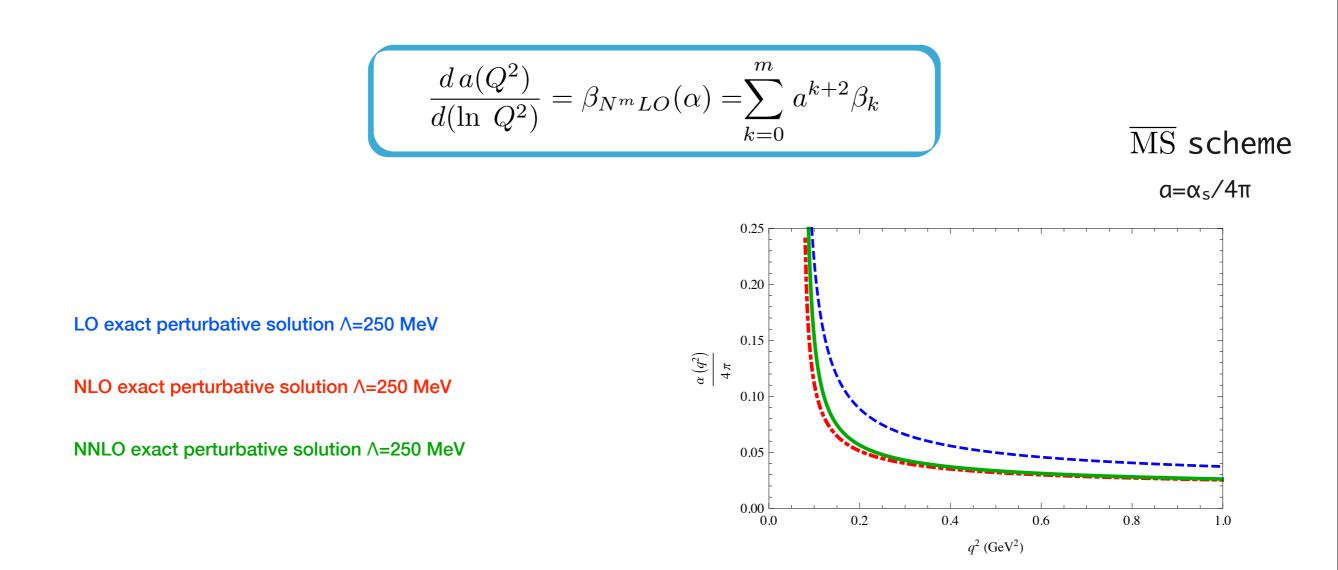


QCD Running Coupling Constant



QCD predicts the shape of the running coupling constant, not its value

QCD Running Coupling Constant



QCD predicts the shape of the running coupling constant, not its value

Intermediate energy? Perturbative to non-perturbative transition?

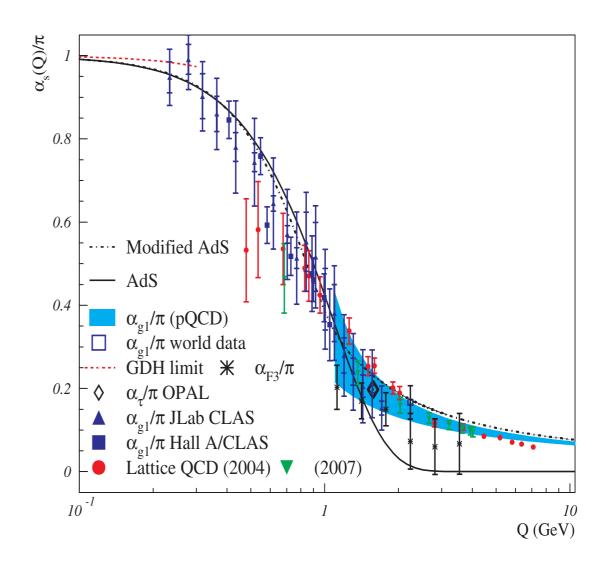
Effective Charges

The non-perturbative approach:

- Importance of finite couplings
- Taming the Landau pole

The non-perturbative extraction:

- Effective couplings from phenomenology
- Dimensional transmutation (RG-improved)
 - from RS dependence to Observable dependence (à la Grunberg)



[Brodsky et al., Phys.Rev.D81]
[Deur et al., Phys.Lett.B60]

Non-perturbative analysis

Qualitative analysis

→ Implications of IR finite α_s in hadronic physics

The non-perturbative approaches:

Cornwall, Phys.Rev.D26, 1453 (1982) Mattingly & Stevenson, Phys.Rev.D49, 437 (1994) Dokshitzer, Marchesini & Webber, Nucl.Phys.B469 (1996) 93 Cornwall & Papavassiliou, Phys.Rev.Lett.79, 1209 (1997) Fischer, J. Phys. G32, R 253 (2006) Alkofer & von Smekal, Phys. Rept. 353, 281 (2001) Aguilar, Mihara & Natale, Phys. Rev.D 65, 054011 (2002) Aguilar, Binosi & Papavassiliou, JHEP 1007, 002 (2010)

Non-perturbative analysis

Qualitative analysis

→ Implications of IR finite α_s in hadronic physics

The non-perturbative approaches:

Cornwall, Phys.Rev.D26, 1453 (1982) Mattingly & Stevenson, Phys.Rev.D49, 437 (1994) Dokshitzer, Marchesini & Webber, Nucl.Phys.B469 (1996) 93 Cornwall & Papavassiliou, Phys.Rev.Lett.79, 1209 (1997) Fischer, J. Phys. G32, R 253 (2006) Alkofer & von Smekal, Phys. Rept. 353, 281 (2001) Aguilar, Mihara & Natale, Phys. Rev.D 65, 054011 (2002) Aguilar, Binosi & Papavassiliou, JHEP 1007, 002 (2010)

- Cornwall: gluon propagator
- ➡ Shirkov: analytic perturbative theory
- ➡ Fischer & Alkofer: ghost-gluon vertex

Nonperturbative Gluon Propagator

Solving the Schwinger-Dyson eqs ...

$$\Delta^{-1}(Q^2) = Q^2 + m^2(Q^2)$$

- J. M. Cornwall, Phys. Rev. D26, 1453 (1982)
- A. C. Aguilar and J. Papavassiliou, JHEP0612, 012 (2006)

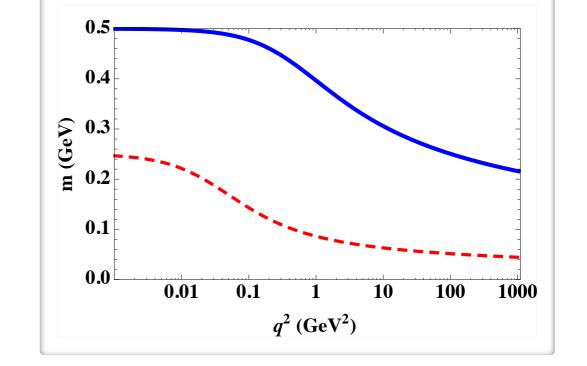
$$m^2(Q^2) = m_0^2 \left[\ln\left(\frac{Q^2 + \rho m_0^2}{\Lambda^2}\right) \middle/ \ln\left(\frac{\rho m_0^2}{\Lambda^2}\right) \right]^{-1-\gamma}$$

Gluon Mass as IR Regulator

• effective gluon mass phenomenological estimates

$$m_0 \sim \Lambda - 2\Lambda$$

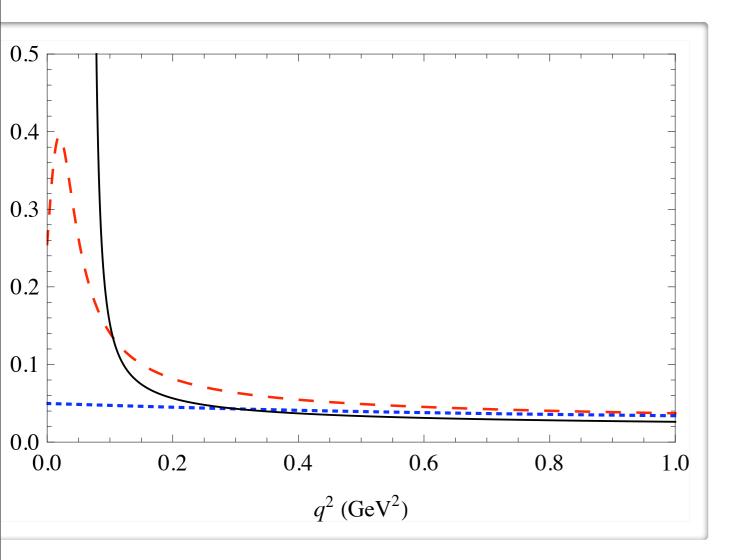
- Solution free of Landau pole
- Freezes in the IR



Low mass scenario High mass scenario

NP Momentum-dependence of the Coupling Constant

$$\frac{\alpha_{\rm NP}(Q^2)}{4\pi} = \left[\beta_0 \ln\left(\frac{Q^2 + \rho m^2(Q^2)}{\Lambda^2}\right)\right]^{-1}$$



LO perturbative evolution $\Lambda{=}250~{\rm MeV}$; \overline{MS} scheme

Low mass scenario NP coupling constant $$m_0{=}250~MeV$; $\Lambda{=}250~MeV$; $\rho{=}1.5$$

High mass scenario NP coupling constant $m_0{=}500~\text{MeV}$; $\Lambda{=}250~\text{MeV}$; $\rho{=}2.$

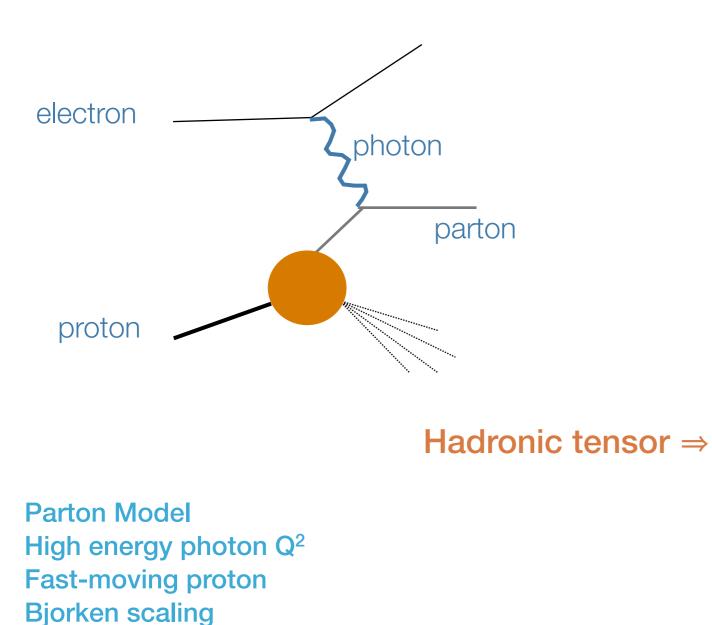
Hadron Structure Phenomenology

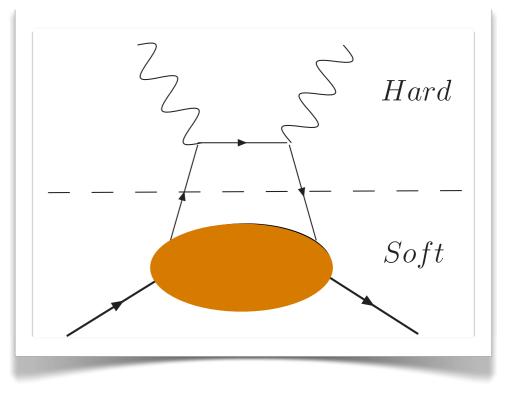
Final State Interaction and Parton Distribution Functions

Hard Probes and Factorization

Small size configuration \Rightarrow Hard Probes \Rightarrow Hard processes

Deep Inelastic Scattering

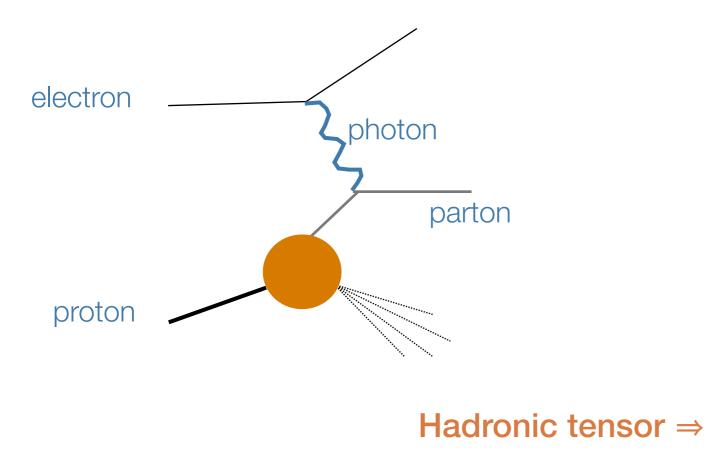




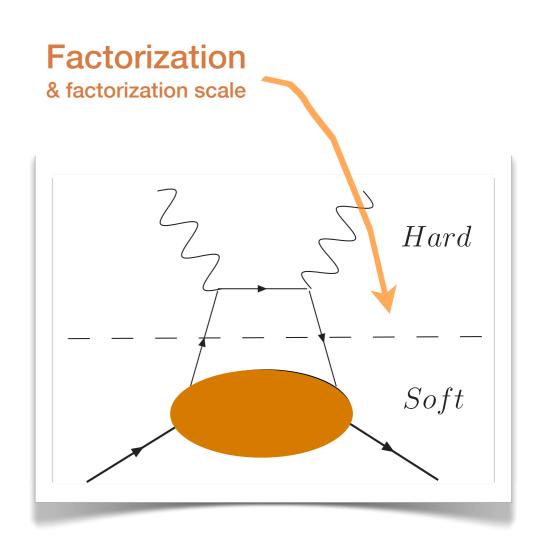
Hard Probes and Factorization

Small size configuration \Rightarrow Hard Probes \Rightarrow Hard processes

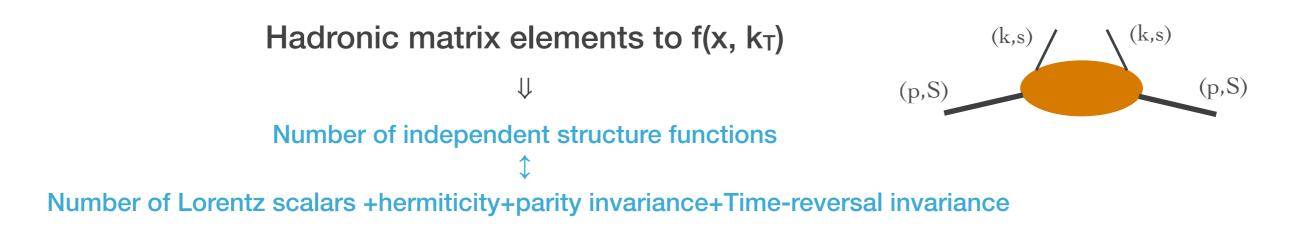
Deep Inelastic Scattering



Parton Model High energy photon Q² Fast-moving proton Bjorken scaling



Transverse Momentum Dependent PDFs



Relaxing Time-reversal invariance ⇒ naive T-odd functions

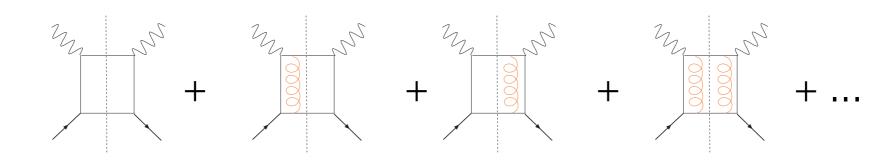
Sivers & Boer-Mulders functions

Sivers, Phys.Rev.D41 Boer & Mulders, Phys.Rev.D57

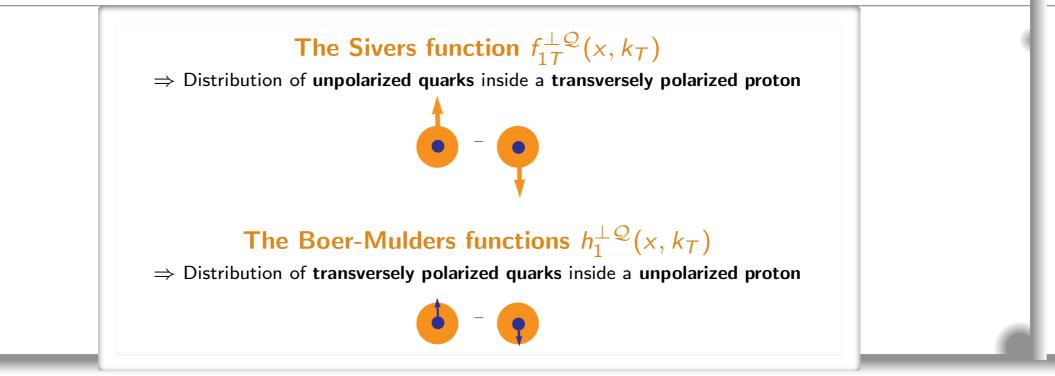
• Existence of Final State Interactions (FSI) at leading-order

Brodsky, Hwang & Schmidt, Phys.Lett.B530

• Importance of the gauge link



T-odd TMDs



• Matrix element of low twist operator

$$f_{1T}^{\perp q}(x,k_T) = -\frac{M}{2k_x} \int \frac{d\xi^- d^2 \vec{\xi}_T}{(2\pi)^3} e^{-i(xp^+\xi^- - \vec{k}_T \cdot \vec{\xi}_T)} \\ \times \frac{1}{2} \sum_{S_y = -1,1} S_y \langle PS_y | \overline{\psi}_q(\xi^-, \vec{\xi}_T) \mathcal{L}_{\vec{\xi}_T}^{\dagger}(\infty, \xi^-) \gamma^+ \mathcal{L}_0(\infty, 0) \psi_q(0, 0) | PS_y \rangle + \text{h.c.}$$

• Importance of gauge link

$$\mathcal{L}_{\vec{\xi}_T}(\infty, \xi^-) = \mathcal{P} \exp\left(-ig \int_{\xi^-}^{\infty} A^+(\eta^-, \vec{\xi}_T) d\eta^-\right)$$
• holds in covariant gauges
• process dependent

• explicit dpdence on $\pmb{\alpha}_{\rm S}$

Final State Interactions in Hadronic Models

Twofold problem

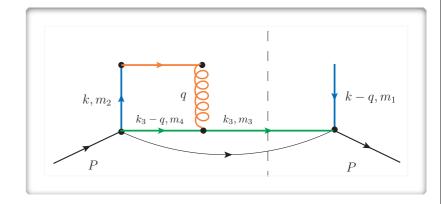
- ➡ FSI mimicked by a one-gluon-exchange
 - gluon propagator
- Explicit dependence on the coupling constant
 - relevance of NP scheme for model calculations



Final State Interactions in Hadronic Models

Twofold problem

- FSI mimicked by a one-gluon-exchange
 - gluon propagator
- Explicit dependence on the coupling constant
 - relevance of NP scheme for model calculations



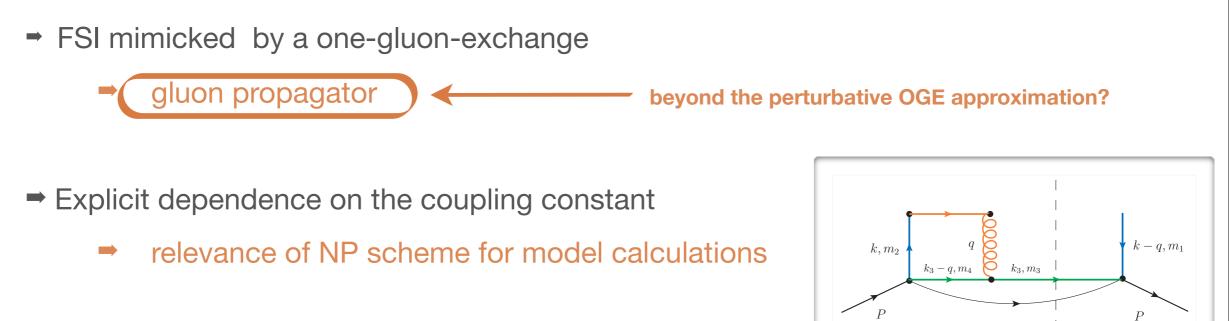
Model calculations

F. Yuan, PLB 575 AC, Vento & Scopetta, PRD79 074001; PRD80 074032

- MIT bag model calculation
 - perturbative QCD governs the dynamics inside the confining region
 - no need for NP gluon propagator
 - ➡ NP scheme → change of hadronic scale
- + Other model calculations? e.g. L. Gamberg and M. Schlegel, Phys. Lett. B 685 (2010) 95

Final State Interactions in Hadronic Models

Twofold problem

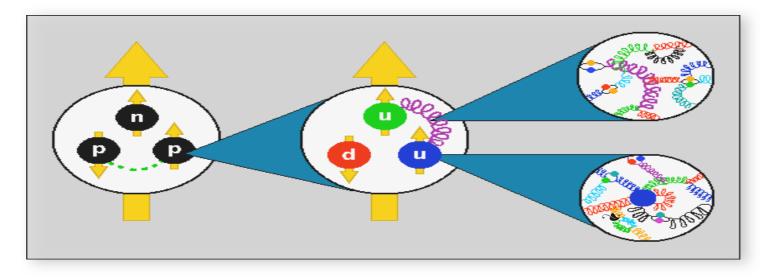


Model calculations

F. Yuan, PLB 575 AC, Vento & Scopetta, PRD79 074001; PRD80 074032

- MIT bag model calculation
 - perturbative QCD governs the dynamics inside the confining region
 - no need for NP gluon propagator
 - ➡ NP scheme → change of hadronic scale
- + Other model calculations? e.g. L. Gamberg and M. Schlegel, Phys. Lett. B 685 (2010) 95

Hadron ⇔ Constituent quarks ⇔ Current quarks

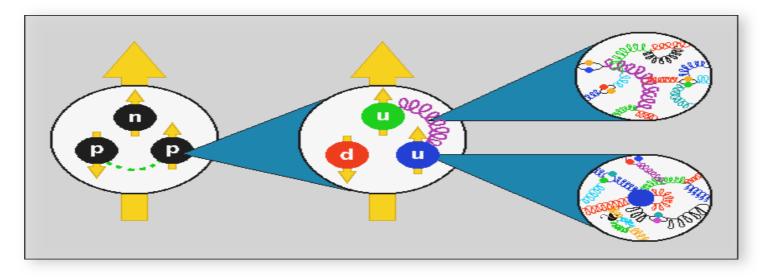


Nonperturbative vs. Perturbative QCD

Models of Hadron Structure

Renormalization Group Eqs.

Hadron ⇔ Constituent quarks ⇔ Current quarks



Nonperturbative vs. Perturbative QCD

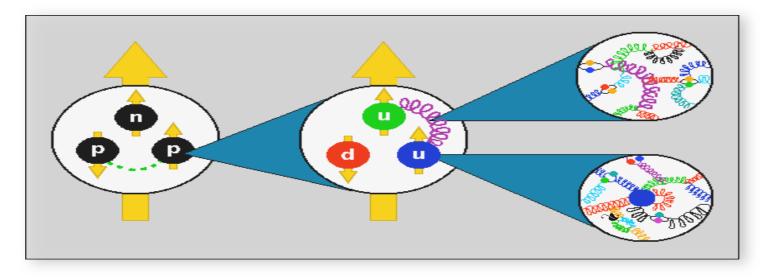
Models of Hadron Structure

Renormalization Group Eqs.

Observable

- calculated in hadronic model
- at scale µ₀
- switch on QCD evolution

Hadron ⇔ Constituent quarks ⇔ Current quarks



Nonperturbative vs. Perturbative QCD

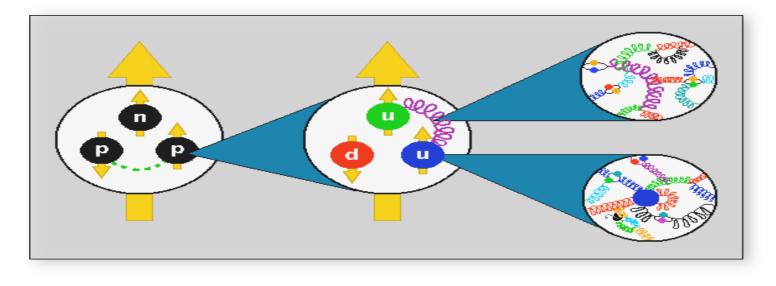
Models of Hadron Structure

Observable

calculated in hadronic model

at scale µ₀
switch on QCD evolution

Hadron ⇔ Constituent quarks ⇔ Current quarks



Nonperturbative vs. Perturbative QCD

Talk by Weiss

Renormalization Group Eqs.

Models of Hadron Structure

Observable

calculated in hadronic model

at scale µ₀
switch on QCD evolution

Hadronic Scale from collinear PDFs, e.g. CTEQ, GRV,...

We use RGE and one *first principle* based assumption. Then we set scenarios ...

Hadronic Scale from collinear PDFs, e.g. CTEQ, GRV,...

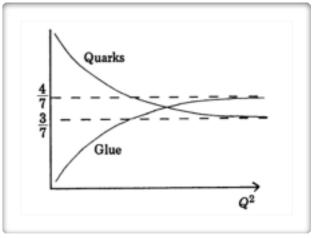
We use RGE and one *first principle* based assumption. Then we set scenarios ...

Say there exists a scale at which there is no sea and no gluon, then

$$\left\langle \left(u_v + d_v\right) \left(\mu_0^2\right) \right\rangle_{n=2} = 1$$

QCD evolution introduces gluons and sea quarks:

DATA= PDFs parameterization



R.G.Roberts "The Structure of the Proton"

Parisi & Petronzio, Phys. Lett. B 62 (1976) 331 Traini et al, Nucl. Phys. A 614, 472 (1997)

Hadronic Scale from collinear PDFs, e.g. CTEQ, GRV,...

We use RGE and one *first principle* based assumption. Then we set scenarios ...

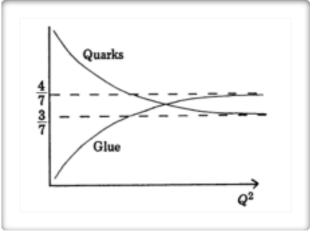
Say there exists a scale at which there is no sea and no gluon, then

$$\left\langle \left(u_v + d_v\right) \left(\mu_0^2\right) \right\rangle_{n=2} = 1$$

QCD evolution introduces gluons and sea quarks:

$$\langle (u_v + d_v) \left(Q^2 = 10 \,\mathrm{GeV}^2 \right) \rangle_{n=2} = 0.36$$

Evolve in energy until 2^{nd} moment=1 Find $\mu_0^2 \sim 0.1 \text{GeV}^2 + \Delta \mu_0^2$



R.G.Roberts "The Structure of the Proton"

Perturbative vs. NP 'evolution': Fixing the hadronic scale

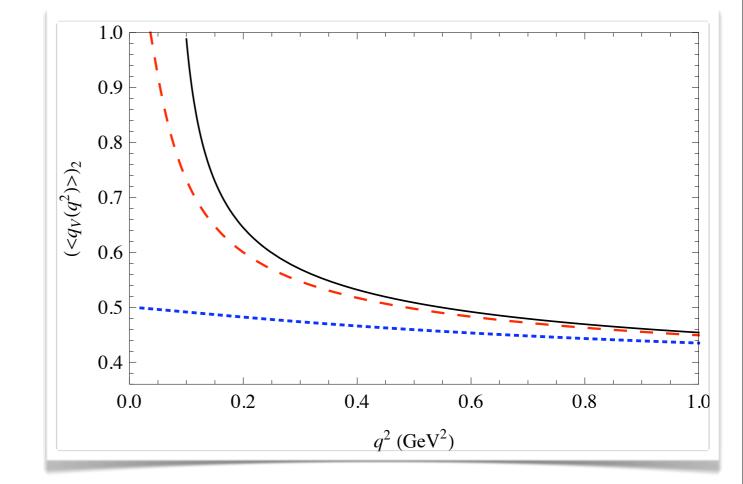
2nd moment of $f_1 \\$

$$\langle q_v(Q^2) \rangle_n = \langle q_v(\mu_0^2) \rangle_n \left(\frac{\alpha(Q^2)}{\alpha(\mu_0^2)}\right)^{d_{NS}^n}$$

LO perturbative evolution $\Lambda{=}250~{\rm MeV}$; \overline{MS} scheme

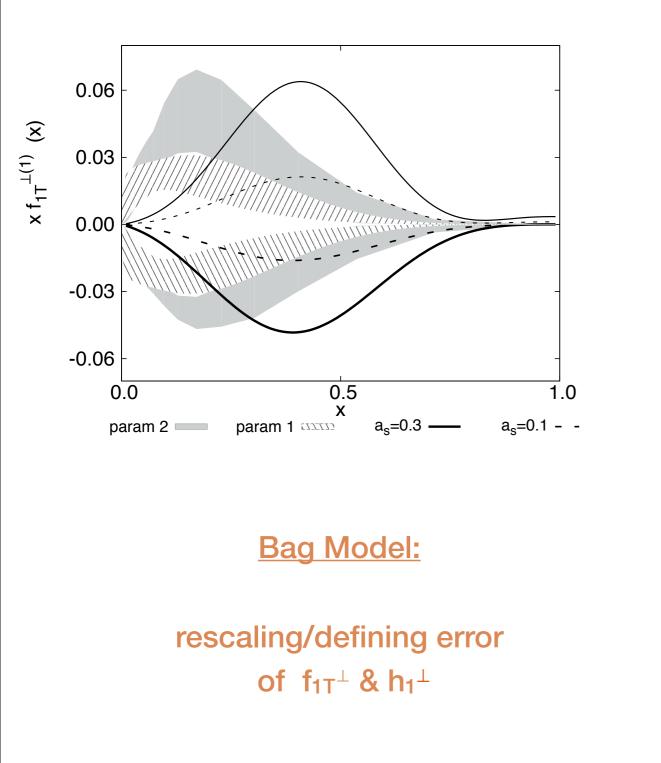
Low mass scenario NP coupling constant $m_0{=}250~\text{MeV}$; $\Lambda{=}250~\text{MeV}$; $\rho{=}1.5$

High mass scenario NP coupling constant $m_0{=}500~\text{MeV}$; $\Lambda{=}250~\text{MeV}$; $\rho{=}2.$

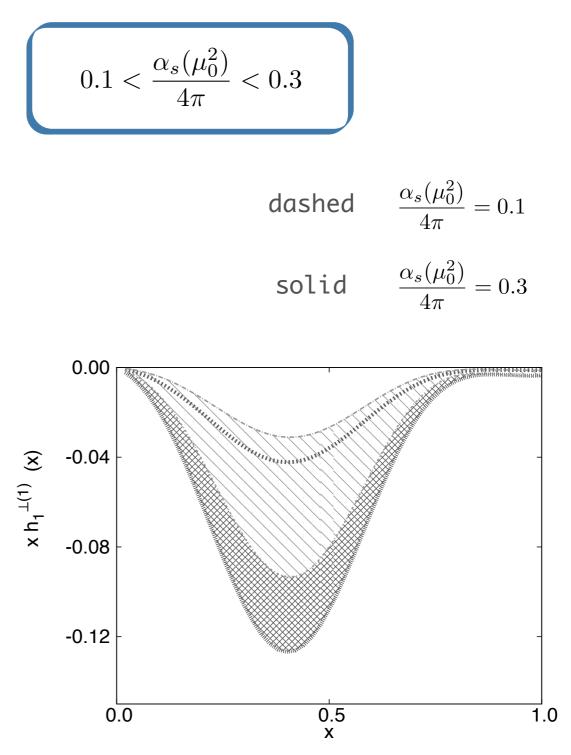


[A.C., Vento & Scopetta, Eur.Phys.J.A47]

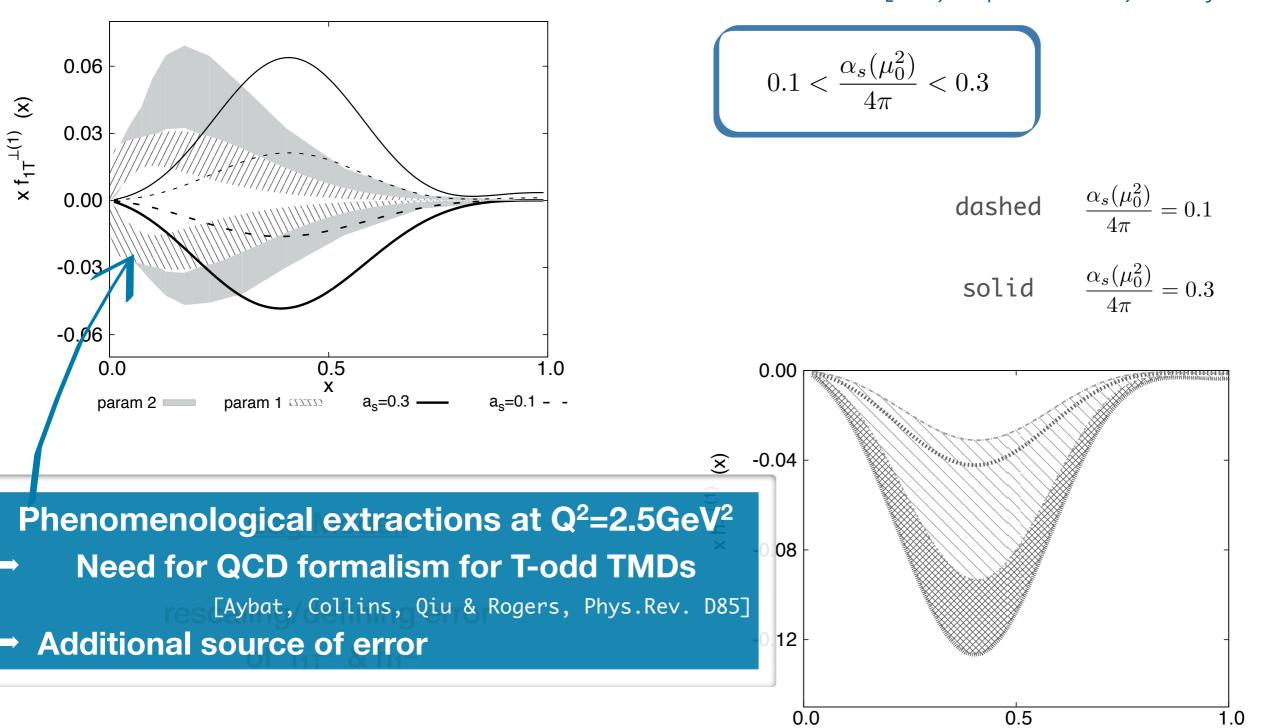
Sivers & Boer-Mulders functions



[A.C., Scopetta & Vento, Eur.Phys.J. A47]



Sivers & Boer-Mulders functions



[A.C., Scopetta & Vento, Eur.Phys.J. A47]

Х

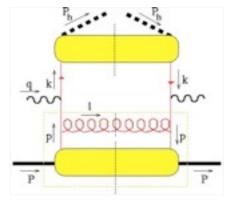
Work in progress for T-odd TMDs

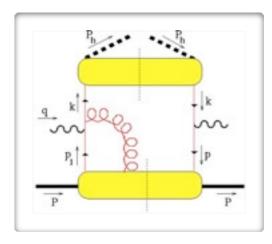
- Ambiguity Sivers function and Qiu-Sterman function
 - Model dependent definition of the FSI and of the proton
- TMD evolution: Coupled CSS and RGE -> two scales ! [Aybat et al., PRD85]
 - Definition of momentum regions
 - Redefinition of both scales for model calculations (with T. Rogers)
- Correspondance effective coupling from the soft blob with pQCD
 - [Brodsky et al., Phys.Rev.D81] À la Grunberg? [Phys. Rev. D29]
 - Commensurate Scale Relations
 [Bro

[Brodsky & Lu, Phys. Rev. D251]

Talk by Qiu

Talk by Brodsky



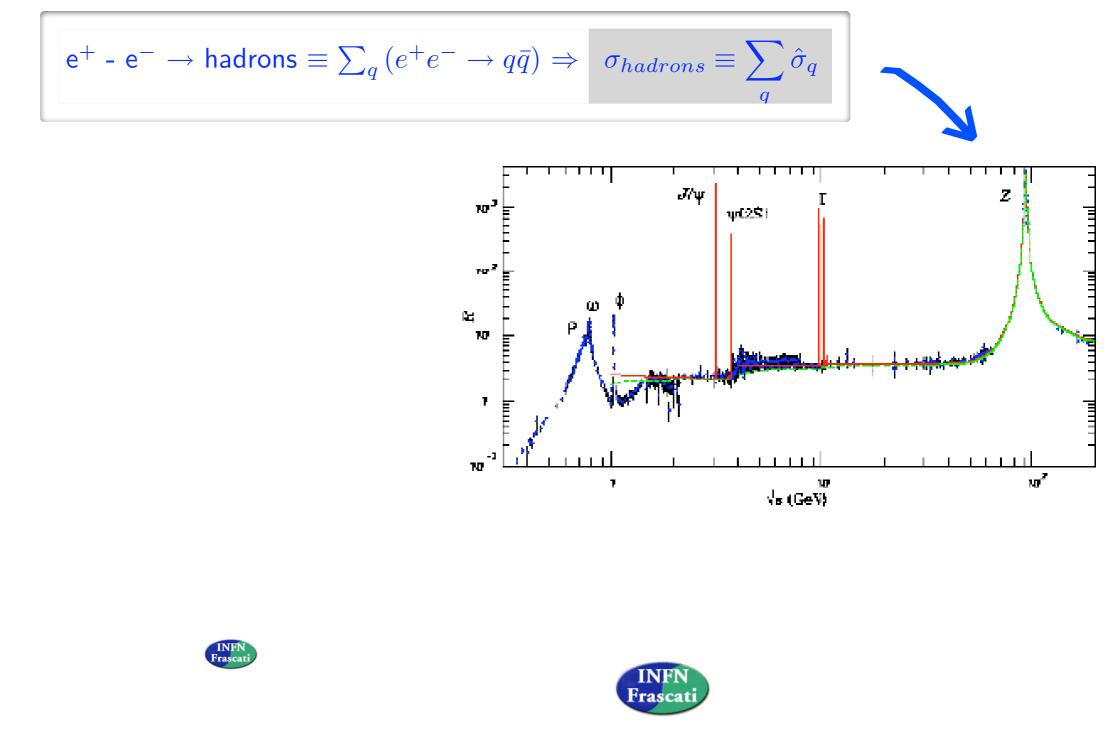


Hadron Structure Phenomenology

Parton-Hadron Duality

Parton-Hadron Duality

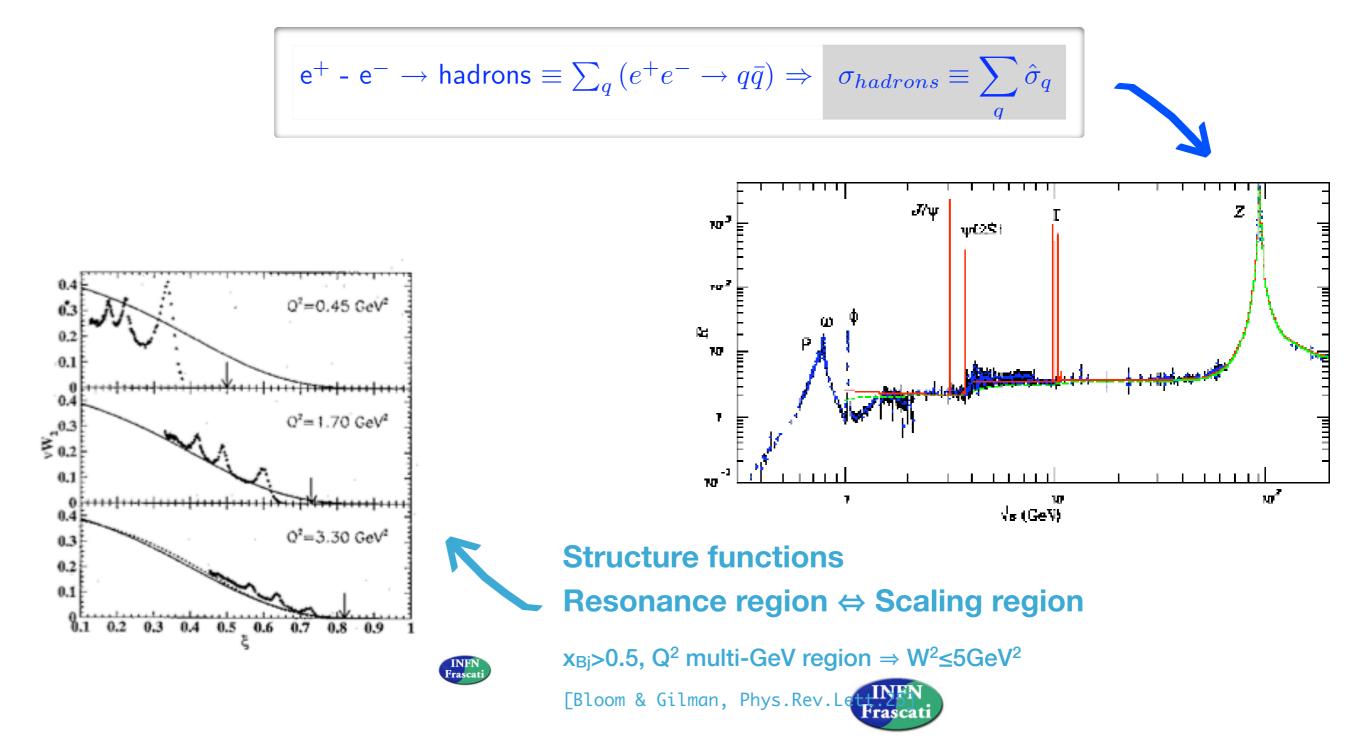
[Poggio, Quinn & Weinberg, Phys Rev D13]



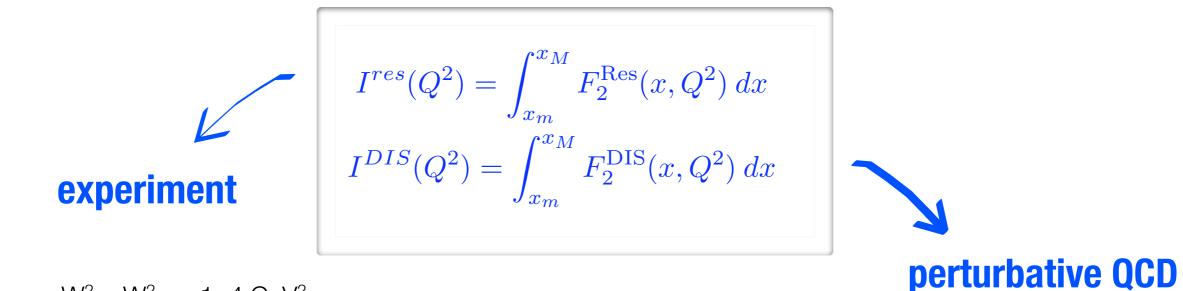
Complementarity between Parton and Hadron descriptions of observable

Parton-Hadron Duality

[Poggio, Quinn & Weinberg, Phys Rev D13]

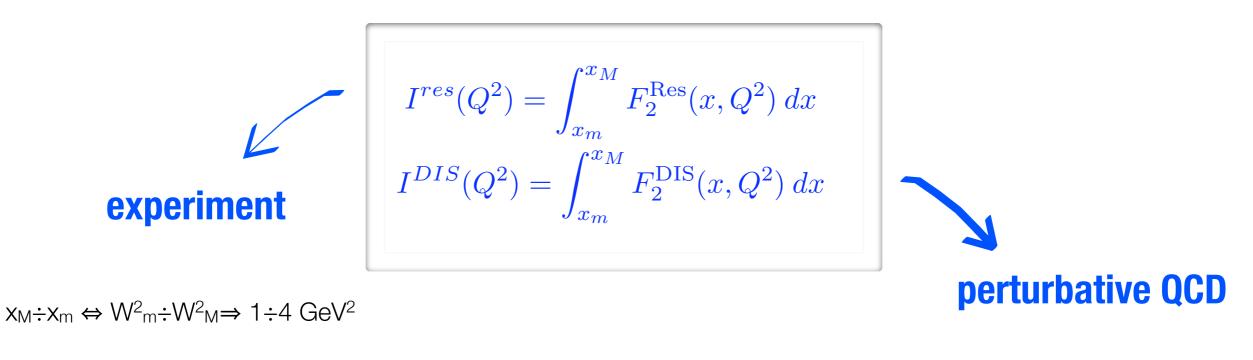


Complementarity between Parton and Hadron descriptions of observable



 $x_M {\div} x_m \Leftrightarrow W^2_m {\div} W^2_M {\Rightarrow} 1 {\div} 4 \text{ GeV}^2$

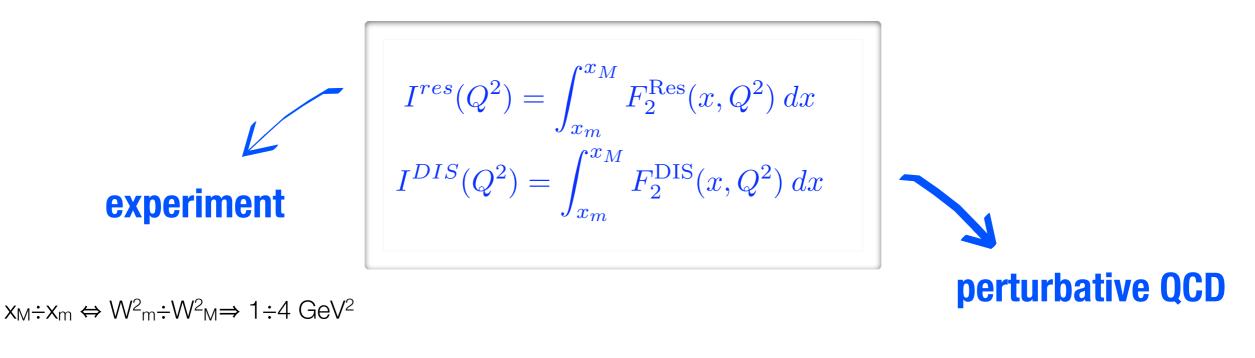
- Nonperturbative models analysis
- Perturbative analysis



Nonperturbative models analysis

• Perturbative analysis

[Bianchi, Fantoni & Liuti, PRD69]



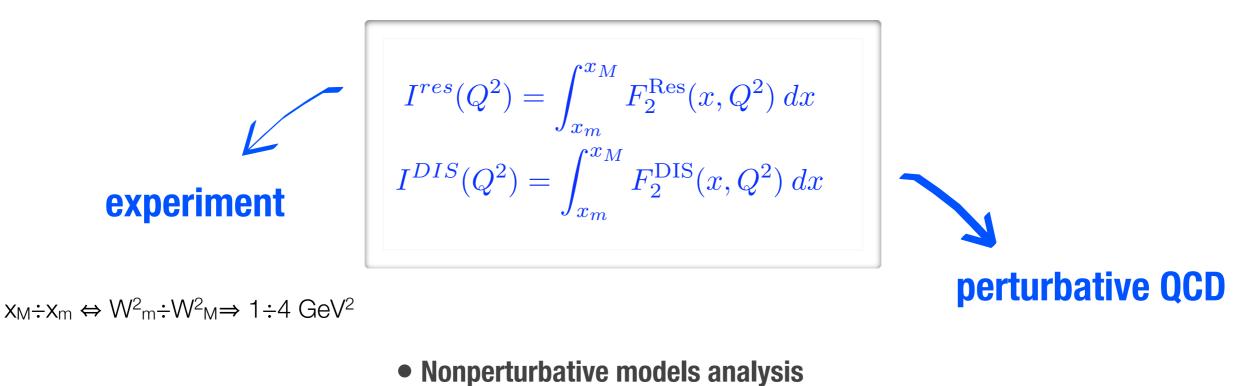
Nonperturbative models analysis

Perturbative analysis

[Bianchi, Fantoni & Liuti, PRD69]

Start with NLO PDF and then ...

- Target Mass Corrections (TMC)
- Large-x Resummation (LxR)
- Higher-order in pQCD
- Higher-Twists



Perturbative analysis

INFN Frascati [Bianchi, Fantoni & Liuti, PRD69]

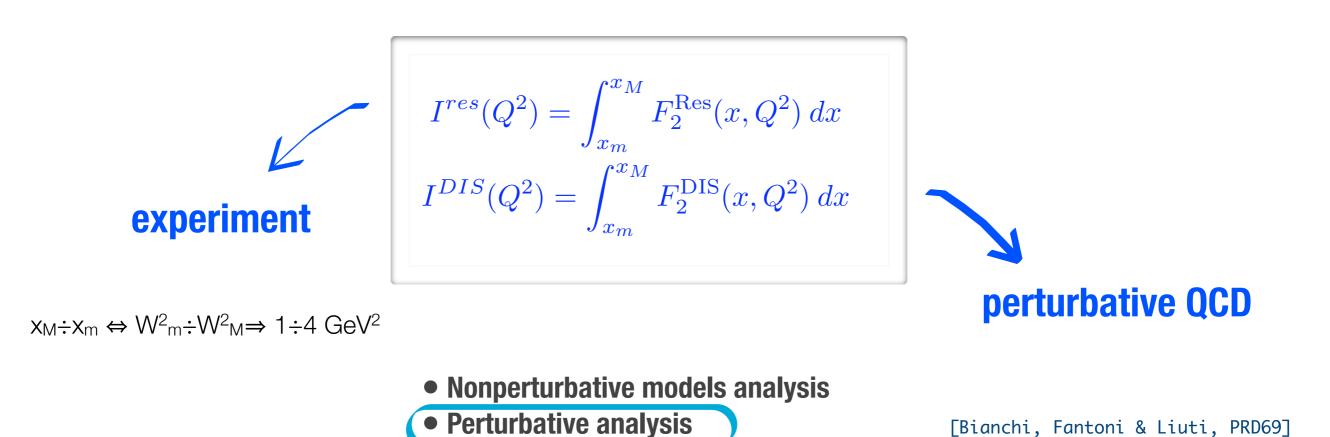
Start with NLO PDF and then ...

- Target Mass Corrections (TMC)
- Large-x Resummation (LxR)
- Higher-order in pQCD
- Higher-Twists

Ok

[A. Accardi, J. -W. Qiu, JHEP 0807] [A. De Rujula,et al., Phys. Lett. B64]

Two Complementary Approaches to Structure Functions



Start with NLO PDF and then ...

- Target Mass Corrections (TMC)
- Large-x Resummation (LxR)
- Higher-order in pQCD
- Higher-Twists

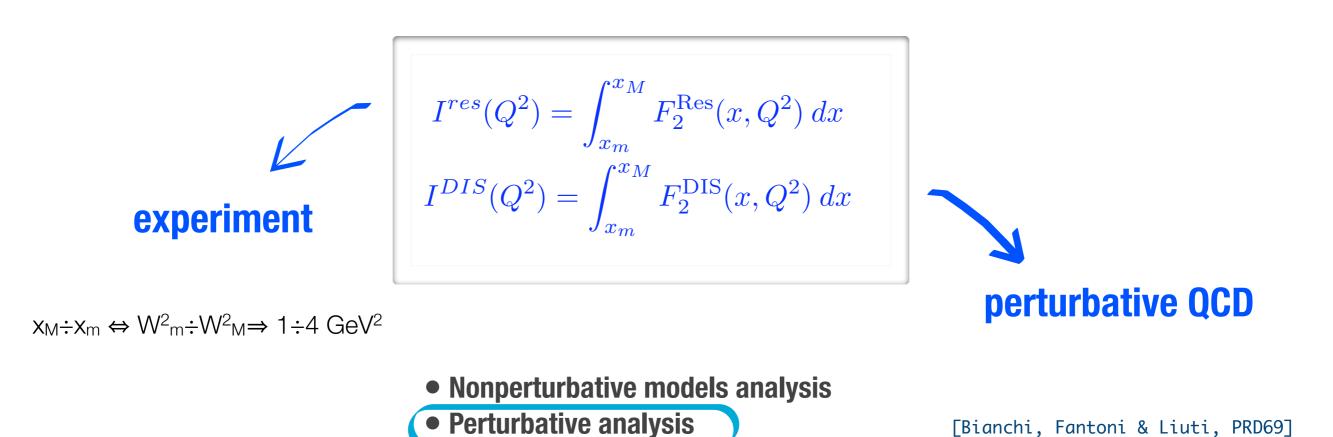
Ok

pQCD

Frascati

[A. Accardi, J. -W. Qiu, JHEP 0807] [A. De Rujula, et al., Phys. Lett. B64]

Two Complementary Approaches to Structure Functions



Ok

pQCD

[A. Accardi, J. -W. Qiu, JHEP 0807]

[A. De Rujula, et al., Phys. Lett. B64]

Start with NLO PDF and then ...

- Target Mass Corrections (TMC)
- Large-x Resummation (LxR)
- Higher-order in pQCD
- Higher-Twists

- Large invariants: $\Lambda^2 \ll W^2 \ll Q^2$
- Argument for α_s is ω^2 , mass square of final state of γ^* parton collision

 $\omega^2 = \frac{Q^2}{z} (1-z)$

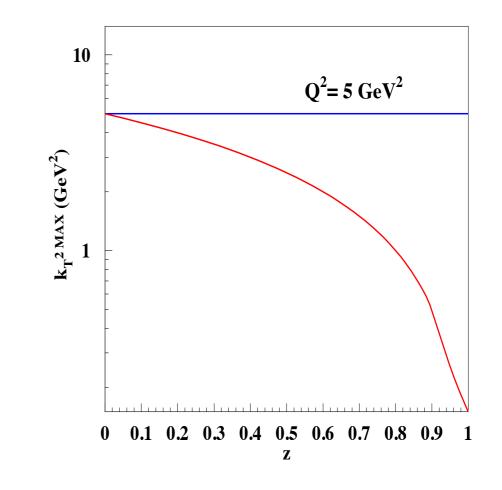
Without LxR, upper limit =Q²

$$q(x,Q^{2}) = \int_{x}^{1} \frac{dz}{z} \int_{\mu^{2}}^{Q^{2}\frac{1-z}{4z}} dk_{T}^{2} \alpha_{S}(k_{T}^{2}) P_{qq}(z) q\left(\frac{x}{z}, k_{T}^{2}\right)$$

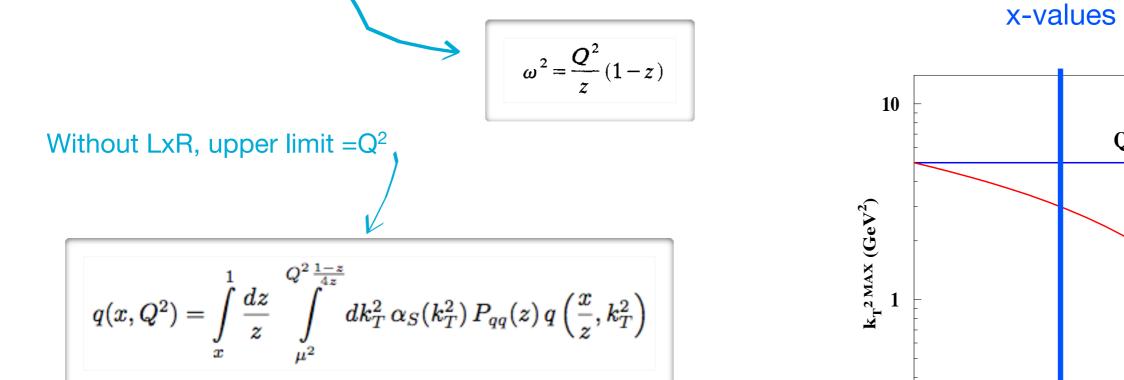
The structure functions become

$$F_{2}^{NS}(x,Q^{2}) = \sum_{q} \int_{x}^{1} dz \, \frac{\alpha_{s}\left(\frac{Q^{2}(1-z)}{4z}\right)}{2\pi} C_{NS}(z) \, q_{NS}\left(\frac{x}{z},Q^{2}\right)$$

$$\frac{\alpha_{s}(x,Q^{2})}{2\pi} \int \frac{\omega_{s}}{z} P_{qq}(z) \, q\left(\frac{z}{z},Q^{2}\right)$$



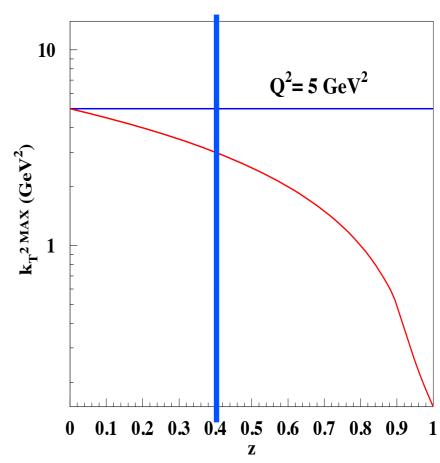
- Large invariants: $\Lambda^2 \ll W^2 \ll Q^2$
- Argument for α_s is ω^2 , mass square of final state of γ^* parton collision



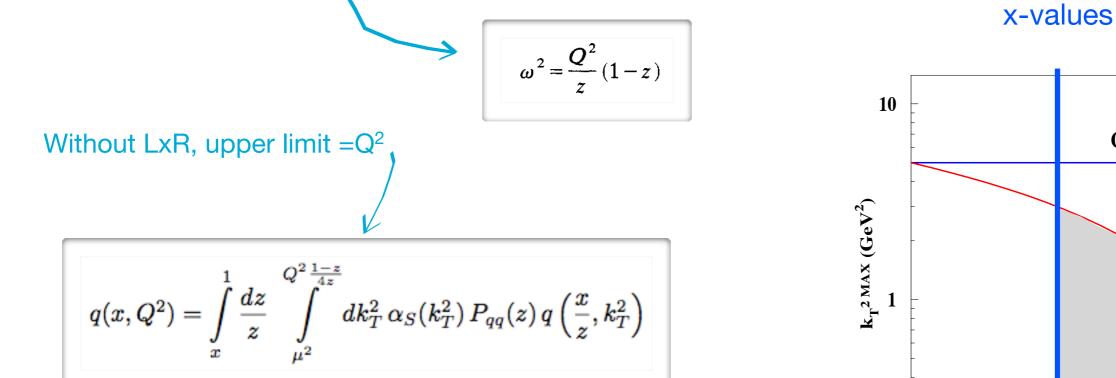
The structure functions become

$$F_{2}^{NS}(x,Q^{2}) = \sum_{q} \int_{x}^{1} dz \, \frac{\alpha_{s}\left(\frac{Q^{2}(1-z)}{4z}\right)}{2\pi} \, C_{NS}(z) \, q_{NS}\left(\frac{x}{z},Q^{2}\right)$$

$$\frac{2}{2} = \frac{\alpha_{S}(z)}{2\pi} \int \frac{\omega_{z}}{z} \, P_{qq}(z) \, q\left(\frac{z}{z},Q^{2}\right)$$



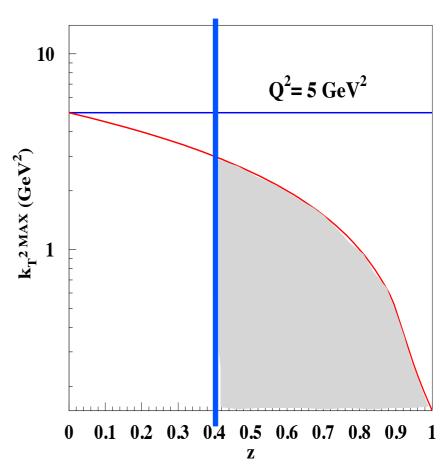
- Large invariants: $\Lambda^2 \ll W^2 \ll Q^2$
- Argument for α_s is ω^2 , mass square of final state of γ^* parton collision



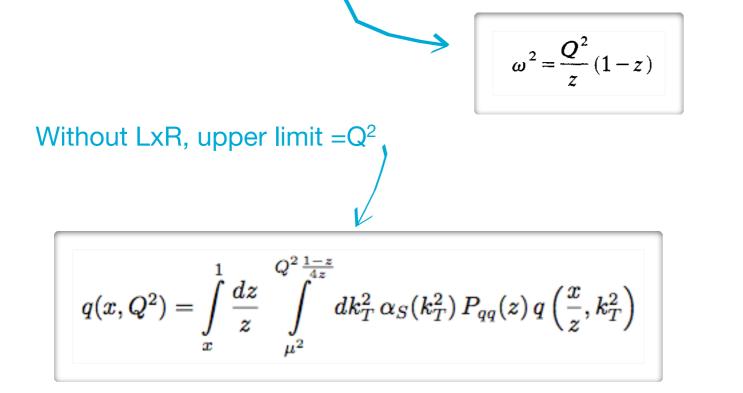
The structure functions become

$$F_{2}^{NS}(x,Q^{2}) = \sum_{q} \int_{x}^{1} dz \, \frac{\alpha_{s}\left(\frac{Q^{2}(1-z)}{4z}\right)}{2\pi} \, C_{NS}(z) \, q_{NS}\left(\frac{x}{z},Q^{2}\right)$$

$$\frac{2}{2} = \frac{\alpha_{S}(z)}{2\pi} \int \frac{\omega_{z}}{z} \, P_{qq}(z) \, q\left(\frac{z}{z},Q^{2}\right)$$



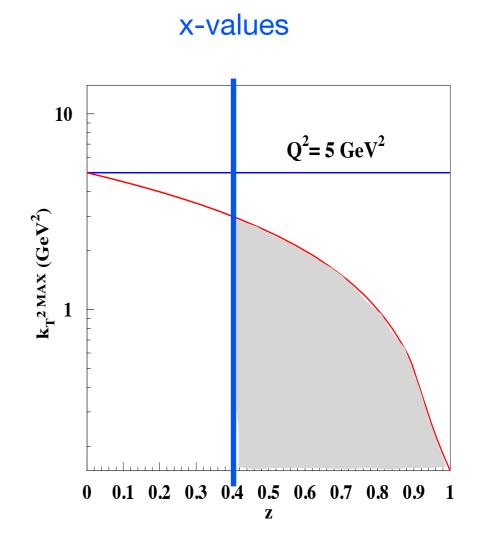
- Large invariants: $\Lambda^2 \ll W^2 \ll Q^2$
- Argument for α_s is ω^2 , mass square of final state of γ^* parton collision



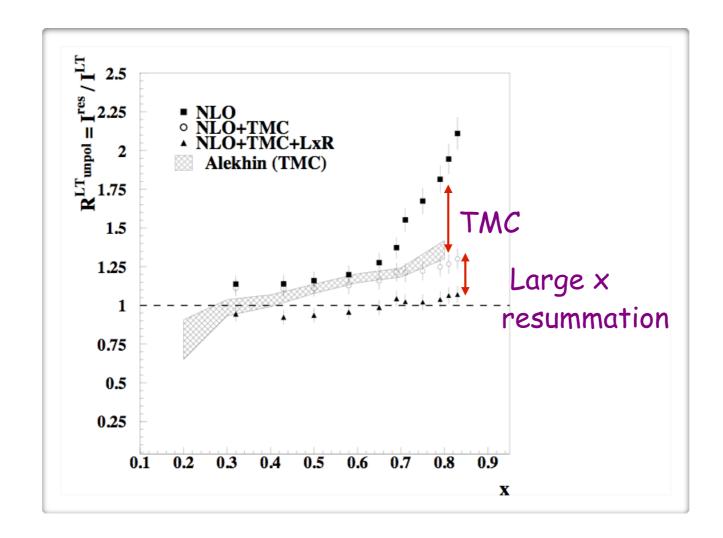
The structure functions become

$$F_{2}^{NS}(x,Q^{2}) = \sum_{q} \int_{x}^{1} dz \, \frac{\alpha_{s}\left(\frac{Q^{2}(1-z)}{4z}\right)}{2\pi} C_{NS}(z) \, q_{NS}\left(\frac{x}{z},Q^{2}\right)$$

$$= \frac{\alpha_{S}(\sqrt{z})}{2\pi} \int \frac{\omega_{s}}{z} P_{qq}(z) \, q\left(\frac{z}{z},Q^{2}\right)$$

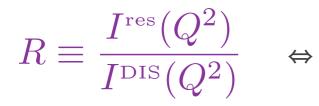


What happens when $\Lambda^2 \sim W^2 \ll Q^2$?

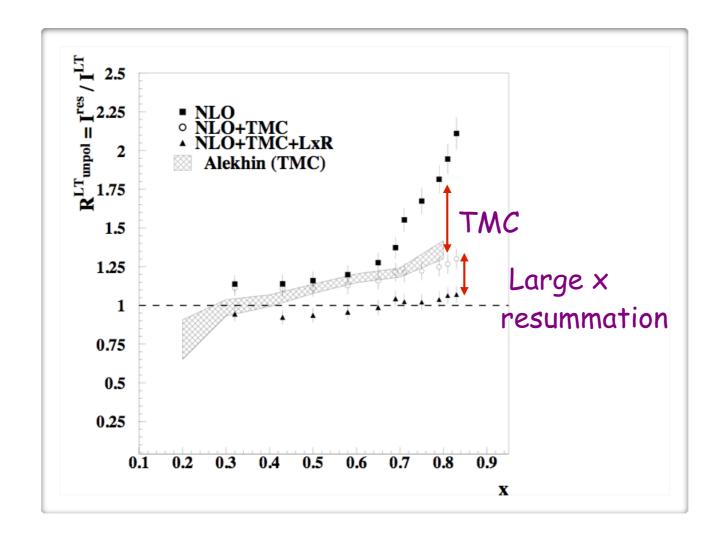


[Niculescu et al., PRD60]

[Bianchi, Fantoni & Liuti, PRD69]

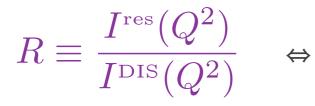


⇔ Duality fulfilled if R=1



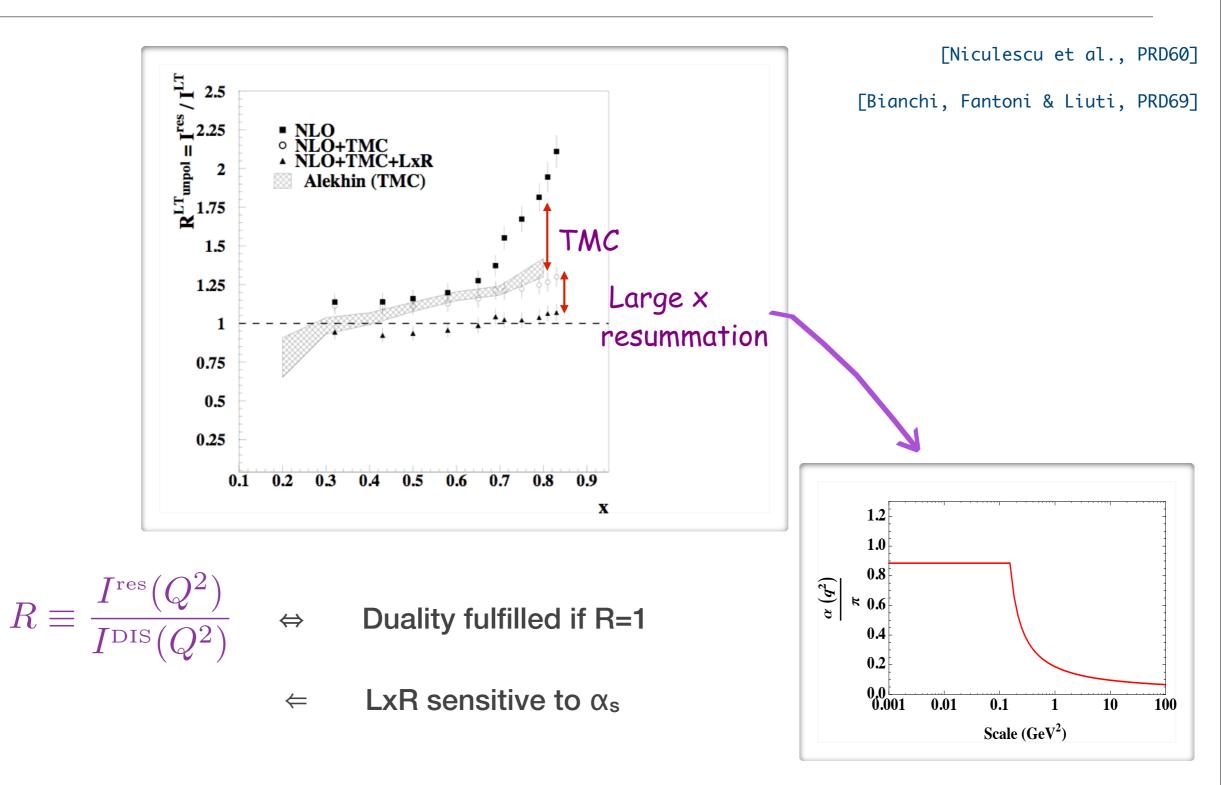
[Niculescu et al., PRD60]

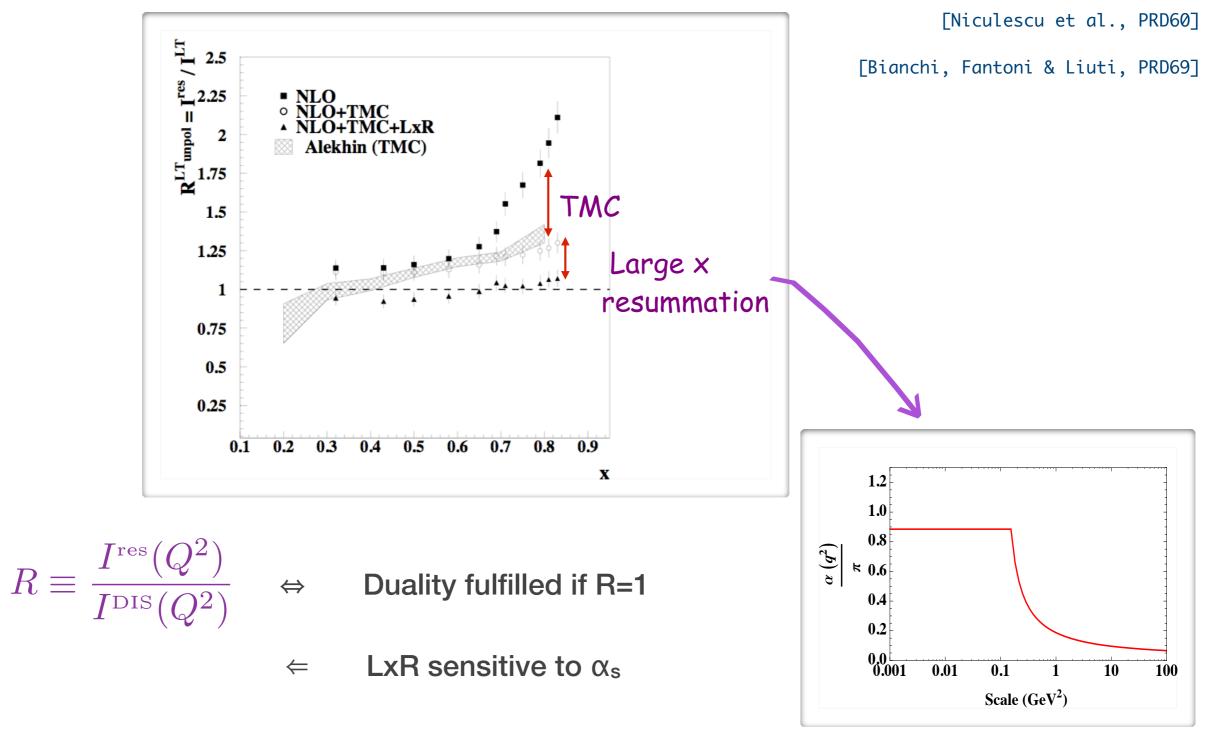
[Bianchi, Fantoni & Liuti, PRD69]



Duality fulfilled if R=1

 $\leftarrow \quad \text{LxR sensitive to } \alpha_{s}$

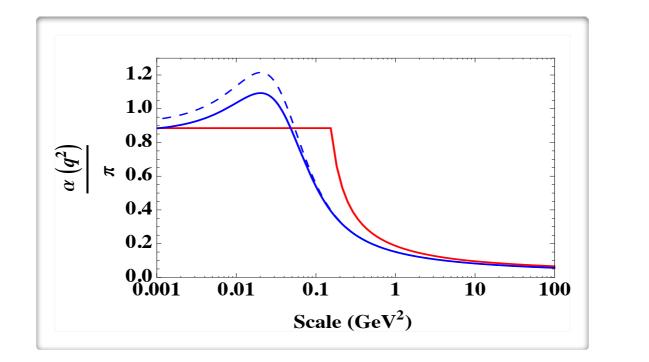




New JLab data to be analyzed (P. Monaghan)

Nonperturbative Coupling Constant & LxR

How we go further : Nonperturbative Coupling Constant from DSE



Cornwall α_s^{NP} 3-4 free parameters (up to physical constrains)

- Nonperturbative effects gathered in effective coupling α_s^{NP}
- Use of NP running coupling that scales to LO pQCD result
- Include in LxR
- Parameterization of the realization of duality
- Understand Higher-Twists ?
- Go to NNLO ?

Work in progress with S. Liuti

Nonperturbative QCD coupling from Phenomenology

Joint analysis: Chen, Courtoy, Deur, Liuti & Vento

Work in progress about α_s at low energy

Nonperturbative to perturbartive transition

- Final States Interactions and pQCD
- Errorbands to measurements (even if error on "model dependence" is immeasurable)

• Perturbative to nonperturbartive transition

- Realization of duality & parametrization via α_s^{NP}
- New data for F₂ in the resonance region at JLab

• How to relate the coupling constant?

- Commensurate Scale Relations?
- RG-improved perturbation theory?

[Brodsky & Lu, Phys. Rev. D251]

[Grunberg, Phys. Rev. D29]

Extraction of α_s at low energy

• Polarized scattering from both proton and neutron

Deur et al. Phys.Lett. B650 (2007) 244-248

Natale, PoS QCD-TNT09 (2009) 031

Bjorken Sum Rule from JLab & GDH Sum Rule at Q²=0 GeV²

• Deep Inelastic Scattering (DIS) at large Bjorken-x & parton-hadron duality

Liuti, [arXiv:1101.5303 [hep-ph]].

Semi-Inclusive DIS & Extraction of T-odd TMDs from SSAs

A.C., Vento & Scopetta, Eur. Phys. J. A47, 49 (2011)

Joint analysis: Chen, Courtoy, Deur, Liuti & Vento

Back-up Slides

Target Mass Corrections

$$F_{2}^{LT(TMC)}(x,Q^{2}) = \frac{x^{2}}{\xi^{2}\gamma^{3}}F_{2}^{\infty}(\xi,Q^{2}) + 6\frac{x^{3}M^{2}}{Q^{2}\gamma^{4}}\int_{\xi}^{1}\frac{d\xi'}{{\xi'}^{2}}F_{2}^{\infty}(\xi',Q^{2}),$$

Accardi & Qiu :

$$F_{T,L}(x_B, Q^2, m_N^2) = \int_{\xi}^{\xi/x_B} \frac{dx}{x} h_{f|T,L}(\tilde{x}_f, Q^2) \varphi_f(x, Q^2) .$$
(18)
(18)
(18)

As a consequence...

$$lpha_S(Q^2)
ightarrow lpha_S[Q^2(1-z)] pprox lpha_S(Q^2) - rac{1}{2}eta_0 rac{\ln(1-z)}{2} \left(lpha_S(Q^2)
ight)^2$$

This takes care of the large log term in the Wilson coefficient f. (NLO, MS-bar) $F_2^{NS}(x,Q^2) = \frac{\alpha_s}{2\pi} \sum_q \int_x^1 dz \, \underline{C}_{NS}(z) \, q_{NS}(x/z,Q^2),$ (24) $C_{NS}(z) = \delta(1-z) + \left\{ C_F \left(\frac{1+z^2}{1-z}\right)_+ \left[\ln\left(\frac{1-z}{z}\right) - \frac{3}{2} \right] + \frac{1}{2}(9z+5) \right\}$

The scale that allows one to annihilate the effect of the large ln(1-z) terms at large x at NLO is the invariant mass, W^2

Equivalent to a resummation of these terms up to NLO